Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.526
Filtrar
1.
Sci Rep ; 14(1): 8707, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622201

RESUMO

In this study, we explored spatial-temporal dependencies and their impact on the tactile perception of moving objects. Building on previous research linking visual perception and human movement, we examined if an imputed motion mechanism operates within the tactile modality. We focused on how biological coherence between space and time, characteristic of human movement, influences tactile perception. An experiment was designed wherein participants were stimulated on their right palm with tactile patterns, either ambiguous (incongruent conditions) or non-ambiguous (congruent conditions) relative to a biological motion law (two-thirds power law) and asked to report perceived shape and associated confidence. Our findings reveal that introducing ambiguous tactile patterns (1) significantly diminishes tactile discrimination performance, implying motor features of shape recognition in vision are also observed in the tactile modality, and (2) undermines participants' response confidence, uncovering the accessibility degree of information determining the tactile percept's conscious representation. Analysis based on the Hierarchical Drift Diffusion Model unveiled the sensitivity of the evidence accumulation process to the stimulus's informational ambiguity and provides insight into tactile perception as predictive dynamics for reducing uncertainty. These discoveries deepen our understanding of tactile perception mechanisms and underscore the criticality of predictions in sensory information processing.


Assuntos
Percepção de Movimento , Percepção do Tato , Humanos , Tato/fisiologia , Percepção do Tato/fisiologia , Percepção Visual , Mãos/fisiologia , Movimento/fisiologia , Percepção de Movimento/fisiologia
2.
PLoS One ; 19(4): e0295342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568979

RESUMO

It has been shown that observing a face being touched or moving in synchrony with our own face increases self-identification with the former which might alter both cognitive and affective processes. The induction of this phenomenon, termed enfacement illusion, has often relied on laboratory tools that are unavailable to a large audience. However, digital face filters applications are nowadays regularly used and might provide an interesting tool to study similar mechanisms in a wider population. Digital filters are able to render our faces in real time while changing important facial features, for example, rendering them more masculine or feminine according to normative standards. Recent literature using full-body illusions has shown that participants' own gender identity shifts when embodying a different gendered avatar. Here we studied whether participants' filtered faces, observed while moving in synchrony with their own face, may induce an enfacement illusion and if so, modulate their gender identity. We collected data from 35 female and 33 male participants who observed a stereotypically gender mismatched version of themselves either moving synchronously or asynchronously with their own face on a screen. Our findings showed a successful induction of the enfacement illusion in the synchronous condition according to a questionnaire addressing the feelings of ownership, agency and perceived similarity. However, we found no evidence of gender identity being modulated, neither in explicit nor in implicit measures of gender identification. We discuss the distinction between full-body and facial processing and the relevance of studying widely accessible devices that may impact the sense of a bodily self and our cognition, emotion and behaviour.


Assuntos
Ilusões , Percepção do Tato , Humanos , Masculino , Feminino , Identidade de Gênero , Autoimagem , Tato
3.
Cortex ; 174: 241-255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582629

RESUMO

Shape is a property that could be perceived by vision and touch, and is classically considered to be supramodal. While there is mounting evidence for the shared cognitive and neural representation space between visual and tactile shape, previous research tended to rely on dissimilarity structures between objects and had not examined the detailed properties of shape representation in the absence of vision. To address this gap, we conducted three explicit object shape knowledge production experiments with congenitally blind and sighted participants, who were asked to produce verbal features, 3D clay models, and 2D drawings of familiar objects with varying levels of tactile exposure, including tools, large nonmanipulable objects, and animals. We found that the absence of visual experience (i.e., in the blind group) led to stronger differences in animals than in tools and large objects, suggesting that direct tactile experience of objects is essential for shape representation when vision is unavailable. For tools with rich tactile/manipulation experiences, the blind produced overall good shapes comparable to the sighted, yet also showed intriguing differences. The blind group had more variations and a systematic bias in the geometric property of tools (making them stubbier than the sighted), indicating that visual experience contributes to aligning internal representations and calibrating overall object configurations, at least for tools. Taken together, the object shape representation reflects the intricate orchestration of vision, touch and language.


Assuntos
Cegueira , Percepção do Tato , Humanos , Cegueira/psicologia , Visão Ocular , Tato
4.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642106

RESUMO

The spatial coding of tactile information is functionally essential for touch-based shape perception and motor control. However, the spatiotemporal dynamics of how tactile information is remapped from the somatotopic reference frame in the primary somatosensory cortex to the spatiotopic reference frame remains unclear. This study investigated how hand position in space or posture influences cortical somatosensory processing. Twenty-two healthy subjects received electrical stimulation to the right thumb (D1) or little finger (D5) in three position conditions: palm down on right side of the body (baseline), hand crossing the body midline (effect of position), and palm up (effect of posture). Somatosensory-evoked potentials (SEPs) were recorded using electroencephalography. One early-, two mid-, and two late-latency neurophysiological components were identified for both fingers: P50, P1, N125, P200, and N250. D1 and D5 showed different cortical activation patterns: compared with baseline, the crossing condition showed significant clustering at P1 for D1, and at P50 and N125 for D5; the change in posture showed a significant cluster at N125 for D5. Clusters predominated at centro-parietal electrodes. These results suggest that tactile remapping of fingers after electrical stimulation occurs around 100-125 ms in the parietal cortex.


Assuntos
Percepção do Tato , Tato , Humanos , Tato/fisiologia , Dedos/fisiologia , Percepção do Tato/fisiologia , Mãos/fisiologia , Eletroencefalografia , Córtex Somatossensorial
5.
Circ Cardiovasc Qual Outcomes ; 17(4): e010249, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533649

RESUMO

BACKGROUND: Women who suffer a witnessed out-of-hospital cardiac arrest receive bystander cardiopulmonary resuscitation (CPR) less often than men. To understand this phenomenon, we queried whether there are differences in deterrents to providing CPR based on the rescuer's gender. METHODS: Participants were surveyed using a national crowdsourcing platform. Participants ranked the following 5 previously identified themes as reasons: rescuers are afraid to injure or hurt women; rescuers might have a misconception that women do not suffer cardiac arrest; rescuers are afraid to be accused of sexual assault or sexual harassment; rescuers have a fear of touching women or that their touch might be inappropriate; and rescuers think that women are faking it or being overdramatic. Participants were adult US residents able to correctly define CPR. Participants ranked the themes if the rescuer was gender unidentified, a man, and a woman, in variable order. RESULTS: In November 2018, 520 surveys were completed. The respondents identified as 42.3% women, 74.2% White, 10.4% Black, and 6.7% Hispanic. Approximately half (48.1%) of the cohort knew how to perform CPR, but only 7.9% had ever performed CPR. When the rescuer was identified as a man, survey participants ranked fear of sexual assault or sexual harassment and fear of touching women or that the touch might be inappropriate as the top reasons (36.2% and 34.0% of responses, respectively). Conversely, when the rescuer was identified as a woman, survey respondents reported fear of hurting or injuring as the top reason (41.2%). CONCLUSIONS: Public perceptions as to why women receive less bystander CPR than men were different based on the gender of the rescuer. Participants reported that men rescuers would potentially be hindered by fears of accusations of sexual assault/harassment or inappropriate touch, while women rescuers would be deterred due to fears of causing physical injury.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca Extra-Hospitalar , Percepção do Tato , Adulto , Masculino , Humanos , Feminino , Parada Cardíaca Extra-Hospitalar/diagnóstico , Parada Cardíaca Extra-Hospitalar/terapia , Inquéritos e Questionários , Conhecimentos, Atitudes e Prática em Saúde
6.
PLoS One ; 19(3): e0298733, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451923

RESUMO

Caress-like is a crucial component of caregiving and a key factor in mother-infant interactions. Mother's experience of touch during her own childhood (i.e., tactile biography) has been found to be related to maternal actual use of caress-like touch (i.e., stroking) during mother-infant exchanges. Evidence also suggests that maternal interoceptive sensibility (i.e., self-perceived sensitivity to inner-body sensations) might be related to sensitive caregiving abilities. However, further empirical investigation is needed to understand to what extent tactile biography and interoceptive sensibility have an impact on mothers' stroking when interacting with their infants. Using an online survey, this cross-sectional study explored the potential association between maternal tactile biography, interoceptive sensibility and use of touch for interaction with their own infants in a group of 377 Italian mothers (mean age = 33.29; SD = 4.79). We tested and compared a series of multivariate linear mediation models using maternal tactile biography as predictor, maternal use of affective touch as outcome variable and Multidimensional Assessment of Interoceptive Awareness (MAIA) subscale scores as mediators. We found that, if a mother had positive touch experiences in her own childhood, she may be more likely to use touch in a positive and nurturing way with her own infant (i.e., stroking). Furthermore, mothers' interoceptive sensibility in the form of attention regulation, self-regulation and body listening mediates the association between their past experiences of positive touch and their use of caress-like touch in mother-infant exchanges. This study highlights that maternal tactile biography is directly associated with mothers' use of caress-like touch and indirectly linked to it through the mediating role of interoceptive sensibility.


Assuntos
Mães , Percepção do Tato , Adulto , Feminino , Humanos , Lactente , Estudos Transversais , Relações Mãe-Filho/psicologia , Mães/psicologia , Tato/fisiologia , Percepção do Tato/fisiologia
7.
PLoS One ; 19(3): e0299213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38530828

RESUMO

Multimodal perception is the predominant means by which individuals experience and interact with the world. However, sensory dysfunction or loss can significantly impede this process. In such cases, cross-modality research offers valuable insight into how we can compensate for these sensory deficits through sensory substitution. Although sight and hearing are both used to estimate the distance to an object (e.g., by visual size and sound volume) and the perception of distance is an important element in navigation and guidance, it is not widely studied in cross-modal research. We investigate the relationship between audio and vibrotactile frequencies (in the ranges 47-2,764 Hz and 10-99 Hz, respectively) and distances uniformly distributed in the range 1-12 m. In our experiments participants mapped the distance (represented by an image of a model at that distance) to a frequency via adjusting a virtual tuning knob. The results revealed that the majority (more than 76%) of participants demonstrated a strong negative monotonic relationship between frequency and distance, across both vibrotactile (represented by a natural log function) and auditory domains (represented by an exponential function). However, a subgroup of participants showed the opposite positive linear relationship between frequency and distance. The strong cross-modal sensory correlation could contribute to the development of assistive robotic technologies and devices to augment human perception. This work provides the fundamental foundation for future assisted HRI applications where a mapping between distance and frequency is needed, for example for people with vision or hearing loss, drivers with loss of focus or response delay, doctors undertaking teleoperation surgery, and users in augmented reality (AR) or virtual reality (VR) environments.


Assuntos
Surdez , Perda Auditiva , Percepção do Tato , Humanos , Tato , Audição , Percepção do Tato/fisiologia
8.
Cortex ; 173: 222-233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430652

RESUMO

Anticipating physical contact with objects in the environment is a key component of efficient motor performance. Peripersonal neurons are thought to play a determinant role in these predictions by enhancing responses to touch when combined with visual stimuli in peripersonal space (PPS). However, recent research challenges the idea that this visuo-tactile integration contributing to the prediction of tactile events occurs strictly in PPS. We hypothesised that enhanced sensory sensitivity in a multisensory context involves not only contact anticipation but also heightened attention towards near-body visual stimuli. To test this hypothesis, Experiment 1 required participants to respond promptly to tactile (probing contact anticipation) and auditory (probing enhanced attention) stimulations presented at different moments of the trajectory of a (social and non-social) looming visual stimulus. Reduction in reaction time as compared to a unisensory baseline was observed from an egocentric distance of around 2 m (inside and outside PPS) for all multisensory conditions and types of visual stimuli. Experiment 2 tested whether these facilitation effects still occur in the absence of a multisensory context, i.e., in a visuo-visual condition. Overall, facilitation effects induced by the looming visual stimulus were comparable in the three sensory modalities outside PPS but were more pronounced for the tactile modality inside PPS (84 cm from the body as estimated by a reachability judgement task). Considered together, the results suggest that facilitation effects induced by visual looming stimuli in multimodal sensory processing rely on the combination of attentional factors and contact anticipation depending on their distance from the body.


Assuntos
Percepção do Tato , Tato , Humanos , Tato/fisiologia , Estimulação Luminosa , Espaço Pessoal , Percepção do Tato/fisiologia , Tempo de Reação/fisiologia , Percepção Espacial/fisiologia
9.
Neuroimage ; 289: 120561, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428551

RESUMO

Previous studies of vicarious touch suggest that we automatically simulate observed touch experiences in our own body representation including primary and secondary somatosensory cortex (SCx). However, whether these early sensory areas are activated in a reflexive manner and the extent with which such SCx activations represent touch qualities, like texture, remains unclear. We measured event-related potentials (ERPs) of SCx's hierarchical processing stages, which map onto successive somatosensory ERP components, to investigate the timing of vicarious touch effects. In the first experiment, participants (n = 43) merely observed touch or no-touch to a hand; in the second, participants saw different touch textures (soft foam and hard rubber) either touching a hand (other-directed) or they were instructed that the touch was self-directed and to feel the touch. Each touch sequence was followed by a go/no-go task. We probed SCx activity and isolated SCx vicarious touch activations from visual carry over effects. We found that vicarious touch conditions (touch versus no-touch and soft versus hard) did not modulate early sensory ERP components (i.e. P50, N80); but we found effects on behavioural responses to the subsequent go/no-go stimulus consistent with post-perceptual effects. When comparing other- with self-directed touch conditions, we found that early and mid-latency components (i.e. P50, N80, P100, N140) were modulated consistent with early SCx activations. Importantly, these early sensory activations were not modulated by touch texture. Therefore, SCx is purposely recruited when participants are instructed to attend to touch; but such activation only situates, rather than fully simulates, the seen tactile experience in SCx.


Assuntos
Córtex Somatossensorial , Percepção do Tato , Humanos , Córtex Somatossensorial/fisiologia , Potenciais Evocados/fisiologia , Mãos , Pele , Eletroencefalografia
10.
IEEE Trans Vis Comput Graph ; 30(5): 2247-2256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38437075

RESUMO

Physical QWERTY keyboards are the current standard for performing precision text-entry with extended reality devices. Ideally, there would exist a comparable, self-contained solution that works anywhere, without requiring external keyboards. Unfortunately, when physical keyboards are recreated virtually, we currently lose critical haptic feedback information from the sense of touch, which impedes typing. In this paper, we introduce the MusiKeys Technique, which uses auditory feedback in virtual reality to communicate missing haptic feedback information typists normally receive when using a physical keyboard. To examine this concept, we conducted a user study with 24 participants which encompassed four mid-air virtual keyboards augmented with increasing amounts of feedback information, along with a fifth physical keyboard for reference. Results suggest that providing clicking feedback on key-press and key-release improves typing performance compared to not providing auditory feedback, which is consistent with the literature. We also found that audio can serve as a substitute for information contained in haptic feedback, in that users can accurately perceive the presented information. However, under our specific study conditions, this awareness of the feedback information did not yield significant differences in typing performance. Our results suggest this kind of feedback replacement can be perceived by users but needs more research to tune and improve the specific techniques.


Assuntos
Tecnologia Háptica , Percepção do Tato , Humanos , Desenho de Equipamento , Gráficos por Computador , Tato , Interface Usuário-Computador
11.
JMIR Aging ; 7: e48265, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512340

RESUMO

BACKGROUND: Digital neuropsychological tools for diagnosing neurodegenerative diseases in the older population are becoming more relevant and widely adopted because of their diagnostic capabilities. In this context, explicit memory is mainly examined. The assessment of implicit memory occurs to a lesser extent. A common measure for this assessment is the serial reaction time task (SRTT). OBJECTIVE: This study aims to develop and empirically test a digital tablet-based SRTT in older participants with cognitive impairment (CoI) and healthy control (HC) participants. On the basis of the parameters of response accuracy, reaction time, and learning curve, we measure implicit learning and compare the HC and CoI groups. METHODS: A total of 45 individuals (n=27, 60% HCs and n=18, 40% participants with CoI-diagnosed by an interdisciplinary team) completed a tablet-based SRTT. They were presented with 4 blocks of stimuli in sequence and a fifth block that consisted of stimuli appearing in random order. Statistical and machine learning modeling approaches were used to investigate how healthy individuals and individuals with CoI differed in their task performance and implicit learning. RESULTS: Linear mixed-effects models showed that individuals with CoI had significantly higher error rates (b=-3.64, SE 0.86; z=-4.25; P<.001); higher reaction times (F1,41=22.32; P<.001); and lower implicit learning, measured via the response increase between sequence blocks and the random block (ß=-0.34; SE 0.12; t=-2.81; P=.007). Furthermore, machine learning models based on these findings were able to reliably and accurately predict whether an individual was in the HC or CoI group, with an average prediction accuracy of 77.13% (95% CI 74.67%-81.33%). CONCLUSIONS: Our results showed that the HC and CoI groups differed substantially in their performance in the SRTT. This highlights the promising potential of implicit learning paradigms in the detection of CoI. The short testing paradigm based on these results is easy to use in clinical practice.


Assuntos
Disfunção Cognitiva , Percepção do Tato , Humanos , Idoso , Tato , Tempo de Reação , Disfunção Cognitiva/diagnóstico , Nível de Saúde , Comprimidos
12.
Proc Natl Acad Sci U S A ; 121(13): e2314901121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466880

RESUMO

Tactile perception of softness serves a critical role in the survival, well-being, and social interaction among various species, including humans. This perception informs activities from food selection in animals to medical palpation for disease detection in humans. Despite its fundamental importance, a comprehensive understanding of how softness is neurologically and cognitively processed remains elusive. Previous research has demonstrated that the somatosensory system leverages both cutaneous and kinesthetic cues for the sensation of softness. Factors such as contact area, depth, and force play a particularly critical role in sensations experienced at the fingertips. Yet, existing haptic technologies designed to explore this phenomenon are limited, as they often couple force and contact area, failing to provide a real-world experience of softness perception. Our research introduces the softness-rendering interface (SORI), a haptic softness display designed to bridge this knowledge gap. Unlike its predecessors, SORI has the unique ability to decouple contact area and force, thereby allowing for a quantitative representation of softness sensations at the fingertips. Furthermore, SORI incorporates individual physical fingertip properties and model-based softness cue estimation and mapping to provide a highly personalized experience. Utilizing this method, SORI quantitatively replicates the sensation of softness on stationary, dynamic, homogeneous, and heterogeneous surfaces. We demonstrate that SORI accurately renders the surfaces of both virtual and daily objects, thereby presenting opportunities across a range of fields, from teleoperation to medical technology. Finally, our proposed method and SORI will expedite psychological and neuroscience research to unlock the nature of softness perception.


Assuntos
Percepção do Tato , Humanos , Pele , Sinais (Psicologia) , Dedos , Tato , Interface Usuário-Computador
13.
Artigo em Inglês | MEDLINE | ID: mdl-38512736

RESUMO

Sensorimotor impairment is a prevalent condition requiring effective rehabilitation strategies. This study introduces a novel wearable device for Mindful Sensorimotor Training (MiSMT) designed for sensory and motor rehabilitation. Our MiSMT device combines motor training using myoelectric pattern recognition along sensory training using two tactile displays. This device offers a comprehensive solution, integrating electromyography and haptic feedback, lacking in existing devices. The device features eight electromyography channels, a rechargeable battery, and wireless Bluetooth or Wi-Fi connectivity for seamless communication with a computer or mobile device. Its flexible material allows for adaptability to various body parts, ensuring ease of use in diverse patients. The two tactile displays, with 16 electromagnetic actuators each, provide touch and vibration sensations up to 250 Hz. In this proof-of-concept study, we show improved two-point discrimination after 5 training sessions in participants with intact limbs (p=0.047). We also demonstrated successful acquisition, processing, and decoding of myoelectric signals in offline and online evaluations. In conclusion, the MiSMT device presents a promising tool for sensorimotor rehabilitation by combining motor execution and sensory training benefits. Further studies are required to assess its effectiveness in individuals with sensorimotor impairments. Integrating mindful sensory and motor training with innovative technology can enhance rehabilitation outcomes and improve the quality of life for those with sensorimotor impairments.


Assuntos
Reabilitação Neurológica , Percepção do Tato , Dispositivos Eletrônicos Vestíveis , Humanos , Qualidade de Vida , Tato/fisiologia , Percepção do Tato/fisiologia
14.
Neurosci Biobehav Rev ; 159: 105595, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373642

RESUMO

Trauma can shape the way an individual experiences the world and interacts with other people. Touch is a key component of social interactions, but surprisingly little is known about how trauma exposure influences the processing of social touch. In this review, we examine possible neurobiological pathways through which trauma can influence touch processing and lead to touch aversion and avoidance in trauma-exposed individuals. Emerging evidence indicates that trauma may affect sensory touch thresholds by modulating activity in the primary sensory cortex and posterior insula. Disturbances in multisensory integration and oxytocin reactivity combined with diminished reward-related and anxiolytic responses may induce a bias towards negative appraisal of touch contexts. Furthermore, hippocampus deactivation during social touch may reflect a dissociative state. These changes depend not only on the type and severity of the trauma but also on the features of the touch. We hypothesise that disrupted touch processing may impair social interactions and confer elevated risk for future stress-related disorders.


Assuntos
Mapeamento Encefálico , Percepção do Tato , Humanos , Afeto/fisiologia , Ocitocina , Hipocampo , Interação Social , Imageamento por Ressonância Magnética
15.
Res Dev Disabil ; 146: 104674, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306842

RESUMO

Atypical sensory processing is common in Attention Deficit Hyperactivity Disorder (ADHD). Despite growing evidence that ADHD symptoms persist into adolescence, the sensory processing of individuals with ADHD in this age group is limited. The aim of this study was to assess differences in self-reported sensory experiences between adolescents with and without ADHD. One hundred thirty-eight Italian adolescents aged between 14 and 18 years (M=16.20; SD= ± 1.90) participated in the study. Sixty-nine participants with ADHD were matched by gender, age, and IQ to 69 typically developing individuals. The sensory processing of all participants was assessed using the Adolescent Sensory Profile (ASP) on the components: low registration, sensation seeking, sensory sensitivity, and sensation avoiding. Moreover, the modalities of ASP were measured: movement, vision, touch, activity level, hearing, and taste/smell. Results show that the ADHD group consistently displayed higher scores across all four components of the sensory profile compared to the control group. The subjects with ADHD also reported higher scores than the control group in all the modalities of ASP. These results confirming the presence of atypical sensory processing in adolescents with ADHD were discussed considering the Cumulative and Emergent Automatic Deficit model (CEAD).


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Percepção do Tato , Humanos , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Sensação , Autorrelato , Movimento
16.
Nat Commun ; 15(1): 1238, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336848

RESUMO

Large-area metamorphic stretchable sensor networks are desirable in haptic sensing and next-generation electronics. Triboelectric nanogenerator-based self-powered tactile sensors in single-electrode mode constitute one of the best solutions with ideal attributes. However, their large-area multiplexing utilizations are restricted by severe misrecognition between sensing nodes and high-density internal circuits. Here, we provide an electrical signal shielding strategy delivering a large-area multiplexing self-powered untethered triboelectric electronic skin (UTE-skin) with an ultralow misrecognition rate (0.20%). An omnidirectionally stretchable carbon black-Ecoflex composite-based shielding layer is developed to effectively attenuate electrostatic interference from wirings, guaranteeing low-level noise in sensing matrices. UTE-skin operates reliably under 100% uniaxial, 100% biaxial, and 400% isotropic strains, achieving high-quality pressure imaging and multi-touch real-time visualization. Smart gloves for tactile recognition, intelligent insoles for gait analysis, and deformable human-machine interfaces are demonstrated. This work signifies a substantial breakthrough in haptic sensing, offering solutions for the previously challenging issue of large-area multiplexing sensing arrays.


Assuntos
Percepção do Tato , Dispositivos Eletrônicos Vestíveis , Humanos , Tato , Eletricidade
17.
Physiol Behav ; 277: 114479, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309608

RESUMO

Institutionalized children are often deprived of affective touch. Such tactile deprivation often leads to constant stress, as measured by the levels of salivary cortisol. We report here the impact of an affective touch program, optimized to activate a specific population of unmyelinated mechanosensitive nerves in the skin called c-tactile afferents (CT) on stress resistance. Two populations of children (age 4-10) were recruited: (i) a cohort living in an orphanage and (ii) a fostered cohort. Both groups received the affective touch program daily for 10-15 min for 5-6 weeks. A cohort of age-matched children living in a family environment acted as a control group and did not receive any instructions for tactile stimulation. Salivary cortisol was collected at the beginning (T1) and at the end (T2) of the study in all three groups. For institutionalized and fostered children there was a significant improvement in the level of cortisol (p < 0.0001) between T1 and T2, which is manifested in the balancing cortisol levels: a decrease where it was elevated and an increase, where the critically low level testified to the distress of the child. Balancing cortisol levels is a process of recovery to normal values, which indicates the restoration of neurohumoral mechanisms of stress regulation. The effect of balancing cortisol levels was more pronounced in the group of fostered children compared to the group of orphanage children (p = 0.0326). The children in the control group had no significant differences.


Assuntos
Percepção do Tato , Tato , Criança , Humanos , Pré-Escolar , Tato/fisiologia , Hidrocortisona , Criança Institucionalizada , Percepção do Tato/fisiologia , Pele/inervação
18.
Sci Rep ; 14(1): 3072, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321068

RESUMO

Autosuggestion is a cognitive process where the inner repetition of a thought actively influences one's own perceptual state. In spite of its potential benefits for medical interventions, this technique has gained little scientific attention so far. Here, we took advantage of the known link between intensity and frequency perception in touch ('Békésy effect'). In three separate experiments, participants were asked to modulate the perceived intensity of vibrotactile stimuli at the fingertip through the inner reiteration of the thought that this perception feels very strong (Experiment 1, n = 19) or very weak (Experiments 2, n = 38, and 3, n = 20), while they were asked to report the perceived frequency. We show that the task to change the perceived intensity of a tactile stimulus via the inner reiteration of a thought modulates tactile frequency perception. This constitutes the first experimental demonstration that an experimental design that triggers autosuggestion alters participants' tactile perception using a response orthogonal to the suggested variable. We discuss whether this cognitive process could be used to influence the perception of pain in a clinical context.


Assuntos
Percepção do Tato , Humanos , Percepção do Tato/fisiologia , Tato/fisiologia , Dedos , Dor , Atenção
19.
Nat Commun ; 15(1): 898, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320986

RESUMO

Previous work identified nociceptive Schwann cells that can initiate pain. Consistent with the existence of inherently mechanosensitive sensory Schwann cells, we found that in mice, the mechanosensory function of almost all nociceptors, including those signaling fast pain, were dependent on sensory Schwann cells. In polymodal nociceptors, sensory Schwann cells signal mechanical, but not cold or heat pain. Terminal Schwann cells also surround mechanoreceptor nerve-endings within the Meissner's corpuscle and in hair follicle lanceolate endings that both signal vibrotactile touch. Within Meissner´s corpuscles, two molecularly and functionally distinct sensory Schwann cells positive for Sox10 and Sox2 differentially modulate rapidly adapting mechanoreceptor function. Using optogenetics we show that Meissner's corpuscle Schwann cells are necessary for the perception of low threshold vibrotactile stimuli. These results show that sensory Schwann cells within diverse glio-neural mechanosensory end-organs are sensors for mechanical pain as well as necessary for touch perception.


Assuntos
Percepção do Tato , Tato , Camundongos , Animais , Tato/fisiologia , Nociceptividade , Percepção do Tato/fisiologia , Mecanorreceptores/fisiologia , Células de Schwann , Dor , Limiar Sensorial
20.
Exp Brain Res ; 242(4): 809-817, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38400993

RESUMO

It is well known that information on stimulus orientation plays an important role in sensory processing. However, the neural mechanisms underlying somatosensory orientation perception are poorly understood. Adaptation has been widely used as a tool for examining sensitivity to specific features of sensory stimuli. Using the adaptation paradigm, we measured event-related potentials (ERPs) in response to tactile orientation stimuli presented pseudo-randomly to the right-hand palm in trials with all the same or different orientations. Twenty participants were asked to count the tactile orientation stimuli. The results showed that the adaptation-related N60 component was observed around contralateral central-parietal areas, possibly indicating orientation processing in the somatosensory regions. Conversely, the adaptation-related N120 component was identified bilaterally across hemispheres, suggesting the involvement of the frontoparietal circuitry in further tactile orientation processing. P300 component was found across the whole brain in all conditions and was associated with task demands, such as attention and stimulus counting. These findings help provide an understanding of the mechanisms of tactile orientation processing in the human brain.


Assuntos
Eletroencefalografia , Percepção do Tato , Humanos , Potenciais Evocados/fisiologia , Tato/fisiologia , Encéfalo/fisiologia , Atenção/fisiologia , Percepção do Tato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...